Controlled Erosion with Micro-Abrasive Blasting: How Improved Technology is Solving New Machining Challenges
Overview

• Who is Comco?
• What is Controlled Erosion?

• Fundamentals of creation.
• How to measure.
• How to control accuracy and repeatability.
What is Controlled Erosion?
Examples of Controlled Erosion
Examples of Controlled Erosion
Examples of Controlled Erosion
Examples of Controlled Erosion
Fundamentals of Controlled Erosion
The Abrasive Stream
Pressure vs. Suction
Ductile Materials

• Material displaces

• Dent size (Ra) depends on abrasive size and velocity

• Erosion slow

• Soft metals, plastics, elastomers
Brittle Materials

• Material shatters

• Pit size depends on material properties, plus abrasive size and velocity

• Erosion fast

• Ceramics, oxides, hardened surfaces
Layered Materials

• Usual goal is to remove top layer without affecting bottom layer

• Abrasive selection is key
How to Measure
• Visual confirmation
• Calipers or micrometer
• Gauges
• Weight loss
• Stylus profilometer
• Laser triangulation
• Microscope / Interferometer
Profilometer

• Comco uses Mitutoyo SJ-201 with Surfpak-SJ software
• 2um tip radius with 0.75 mN downforce
• Manufacturer claims 10 nm resolution
• 1000 nm real-world depth measuring
• $2500 for profilometer and $2500 for software
Profilometer

Unfiltered measurement profile

Profile filtered to remove higher frequencies
Laser Triangulation

- Comco uses Keyence LK-H008W sensor and LK-G5001 controller
- 20um x 550um beam spot size
- Manufacturer claims 5 nm resolution
- 100 nm real-world depth measuring
- $7000 for sensor and $3000 for controller
• Comco has explored Keyence VK-9700 and Zygo NewView 7000 series
• Manufacturers claim better than .1 nm resolution
• Typical system cost around $100,000
Microscope / Interferometer
How to Control Erosion Depth
What does the application require?

• Depth
 – Typical depths 0.5um to 10mm
 – Typical tolerances ±0.5um to ±0.5mm

• Surface Roughness
 – Typical roughness 0.1um Ra to 2.0um Ra
 – Typical tolerances 5% of Ra

• Delineation
 – Sharp transition from blasted to unblasted
 may require a mask
Visual Control

• Effective for coating removal applications

• Effective in manual applications

• Select abrasive that preferentially erodes top material and does not as readily affect underlying material
Automatic Control
Timed Blast

- Experiment with different blast durations
- Measure resultant depths
- Interpolate & experiment to find required duration
- Abrasive, velocity, and quantity consistency critical to depth repeatability
- Target part must be very consistent

±1 um
Real-Time Abrasive Output

• Blast part until a predetermined amount of abrasive has been output

• Abrasive used on part is a good predictor of depth

• Abrasive, velocity, and quantity consistency critical to depth repeatability

• Target part must be very consistent

±0.5 um
Blast – Measure – Blast

- Similar to timed blast, but can accommodate some input variability
- Inconvenient to need to interrupt process for measurement
- Risk of mask not being properly aligned when reinstalled

±0.5 um
Real-Time Depth Measurement

• Triangulation laser sensor compatible with blast environment

• Accommodates large range of input variability

• Part can vary in erosive resistance

• Blast consistency not as critical

±0.1 um
Conclusion

• Fundamentals of creation
 – Blast stream requirements
 – Target surface types

• How to measure
 – Various measurement devices

• How to control accuracy and repeatability
 – Open and closed loop methods